
AN OBJECT-ORIENTED APPROACH FOR PARALLEL
MESH REFINEMENT ON BLOCK STRUCTURED GRIDS 1

Max Lemke 2 and Kristian Witsch

Mathematisches Institut der Universit/it Diisseldorf, Germany //_ _/_(,¢_

Daniel Quinlan 2
Computational Mathematics Group, University of Colorado, Denver _f/:_

SUMMARY

Self-adaptive mesh refinement dynamically matches the computational demands of a solver for

partial differential equations to the activity in the .application's domain. In this paper we present
two C++ class libraries, P++ and AMR++, which significantly simplify the development of
sophisticated adaptive mesh refinement codes on (massively) parallel distributed memory
architectures. The development is based on our previous research in this area. The C++ class

libraries provide abstractions to separate the issues of developing parallel adaptive mesh refinement
applications into those of parallelism, abstracted by P++, and adaptive mesh refinement,
abstracted by AMR++. P++ is a parallel array class library to permit efficient development of
architecture independent codes for structured grid applications, and AMR++ provides support for

self-adaptive mesh refinement on block-structured grids of rectangular non overlapping blocks.
Using these libraries the application programmers' work is greatly simplified to primarily specifying
the serial single grid application, and obtaining the parallel and self-adaptive mesh refinement code
with minimal effort.

Initial results for simple singular perturbation problems solved by self-adaptive multilevel

techniques (FAC, AFAC), being implemented on the basis of prototypes of the P++/AMR++
environment, are presented. Singular perturbation problems frequently arise in large applications,

e.g. in the area of computational fluid dynamics. They usually have solutions with layers which
require adaptive mesh refinement and fast basic solvers in order to be resolved efficiently.

INTRODUCTION

The purpose of local mesh refinement during the solution of partial differential equations
(PDEs) is to match computational demands to an application's activity: In a fluid flow problem this
means that only regions of high local activity (shocks, boundary layers, etc.) can demand increased
computational effort; regions of little flow activity (or interest) are more easily solved using only
relatively little computational effort. In addition, the ability to adaptively tailor the computational
mesh to the changing requirements of the application problem at runtime (e.g. moving fronts in
time dependent problems) provides for much faster solution methods than static refinement or even
uniform grid methods. Combined with increasingly powerful parallel computers that are becoming
available, such methods allow for much larger and more comprehensive applications to be run. With
local refinement methods, the greater disparity of scale introduced in larger applications can be
addressed locally. Without local refinement, the resolution of smaller features in the applications
domain can impose global limits either on the mesh size or the time step. The increased
computational work associated with processing the global mesh cannot be readily offset even by the
increased computational power of advanced parallel computers. Thus, local refinement is a natural

part of the use of advanced massively parallel computers to process larger and more comprehensive
applications.

tRevised and shortened version of [10]. This research has been supported by the National Aeronautics and Space Ad-

ministration under grant number NASI-18606 and the German Federal Ministry of Research and Technology (BMFT)

under PARANUSS, grant number ITR 900689.

2Part of this work belongs to the author's dissertation.

345PR_I_ PAGE BLANK I_OT FILMED "PAG INTENTIONALLY8LANK"r

Our experiments with different local refinement algorithms for the solution of the simple
potential flow equation on parallel distributed memory architectures (e.g. [8]) demonstrates that,
with the correct choice of solvers, performance of local refinement codes shows no significant sign of
degradation as more processors are used. In contrast to conventional wisdom, the fundamental
techniques used in our adaptive mesh refinement methods do not oppose the requirements for
efficient vectorization and parallelization. However, the best choice of the numerical algorithm is
highly dependent on its parallelization capabilities, the specific application problem and its adaptive
grid structure, and, last but not least, the target architectures' performance parameters. Algorithms
that are expensive on serial and vector architectures, but are highly parallelizable, can be superior
on one or several classes of parallel architectures.

Our previous work with parallel local refinement, which was done in the C language to better

allow access to dynamic memory management, has permitted only simplified application problemS
on non block structured composite grids of rectangular patches. The work was complicated by the
numerical properties of local refinement, including self adaptivity and their parallelization
capabilities like, for example, static and dynamic load balancing. In particular, the explicit
introduction of parallelism in the application code is very cumbersome. Software tools for

simplifying this are not available, e.g., existing grid oriented communication libraries (as used in [6])
are far too restrictive to be efficiently applied to this kind of dynamic problem. Thus, extending this
code for the solution of more general complex fluid flow problems on complicated block structured
grids is limited by the software engineering problem of managing the large complexities of the

application problem, the numerical treatment of self-adaptive mesh refinement, complicated grid
structures, and explicit parallelization. The development of codes that are portable across different :
target architectures and that are applicable to not just one problem and algorithm, but to a larger
class, is impossible under these conditions.

Our solution to this software difficulty presents abstractions as a means of handling the
combined complexities of adaptivity, mesh refinement, the application specific algorithm, and
parallelism. These abstractions greatly simplify the development of algorithms and codes for
complex applications. As an example, the abstraction of parallelism permits the development of
application codes (necessarily based on parallel algorithms as opposed to serial algorithms, whose
data and computation structures do not allow parallelization) in the simplified serial environment,
and the same code to be executed in a massively parallel distributed memory environment.

This paper introduces an innovative set of software tools to simplify the development of parallel
adaptive mesh refinement codes for difficult algorithms. The tools are present in two parts, which
form C++ class libraries and allow for the management of the great complexities described above.
The first class library, P++ (short summary in Section 2, details in [10]), forms a data parallel
superset of the C++ language with the commercial C++ array class library M++ (Dyad Software
Corporation). A standard C++ compiler is used with no modifications of the compiler required.
The second set of class libraries, AMR++ (Section 3), forms a superset of the C++/M++, or P++,
environment and further specifies the combined environment for local refinement (or parallel local
refinement). In Section 4 we introduce multilevel algorithms that allow for the introduction of

self-adaptive mesh refinement (Asynchronous) Fast Adaptive Composite Methods (FAC and
AFAC)). In Section 5, we present first results for a simple singular perturbation problem that has
been solved using FAC and AFAC algorithms being implemented on the bases of AMR++ and

P++ prototypes. This problem serves as a good model problem for complex fluid flow applications,
because several of the properties that are related to self-adaptive mesh refinement are already
present in it.

We are particularly grateful to Steve McCormick, without whose support this joint work would
not have been possible, and to the people at the Federal German Research Center Jiilich (KFA) for
their generous support in letting us use their iPSC/860 environment. In addition we would like to

thank everybody who discussed P++ or AMR++ with us or in any other way supported our work.

346

P++, A PARALLEL ARRAY CLASS LIBRARY FOR STRUCTURED GRIDS

P++ is an innovative, robust, and architecture-independent array class library that simplifies

the development of efficient parallel programs for large scale scientific applications by abstracting
parallelism. The target machines are current and evolving massively parallel distributed memory
multiprocessor systems (e.g. Intel iPSC/860 and PARAGON, Connection Machine 5, Cray MPP,
IBM RS 6000 networks) with different types of node architectures (scalar, vector, or superscalar).

Through the use of portable communication and tool libraries (e.g. EXPRESS, ParaSoft
Corporation), the requirements of shared memory computers are also addressed. The P++ parallel
array class library is implemented in standard C++ using the serial M++ array class library, with
absolutely no modification of the compiler. P++ allows for software development in the preferred
serial environment, and such software to be efficiently run, unchanged, in all target environments.

The runtime support for parallelism is both completely hidden and dynamic so that array partitions
need not be fixed during execution. The added degree of freedom presented by parallel processing is

exploited by use of an optimization module within the array class interface. For detail, please refer

to [10].

Application class: The P++ application class is currently restricted to structured grid-oriented
problems, which form a primary problem class currently represented in scientific supercomputing.
This class is represented by dimensionally independent block structured grids (1D - 4D) with
rectangular or logically rectangular grid blocks. The M++ array interface, which is also used as the
P++ interface and whose functionality is similar to the array features of Fortran 90, is particularly
well suited to express operations on grid blocks to the compiler and to the P++ environment at
runtime.

Programming Model and ParaIMism: P++ is based on a Single Program Multiple Data Stream
(SPMD) programming model, which consists of executing one single program source on all nodes of
the parallel system. Its combination with the Virtual Shared Grids (VSG) model of data parallelism
(a restriction of virtual shared memory to structured grids, whose communication is controlled at
runtime) is essential for the simplified representation of the parallel program using the serial
program and hiding communication within the grid block classes. Besides different grid partitioning
strategies, two communication update principles are provided and automatically selected at
runtime: Overlap Update for very efficient nearest neighbor grid element access of aligned data and
VSG Update for general grid (array) computations. By use of local partitioning tables,
communication patterns are derived at runtime, and the appropriate send and receive messages of
grid portions are automatically generated by P++ selecting the most efficient communication
models for each operation. As opposed to general Virtual Shared Memory implementations, VSG
allows for obtaining similar parallel performance as for codes based on the traditionally used explicit
Message Passing programming model. Control flow oriented functional parallelism until now is not
particularly supported in P++. However, a cooperation with the developers of CC++ ([4]) is

planned.

Surn, mar_a of P++ Features:

* Object oriented indexing of the array objects simplifies development of serial codes by
removing error prone explicit indexing common to/br or do loops.

• Algorithm and code development takes place in a serial environment. Serial codes are
re-compilable to run in parallel without modification.

• P++ codes are portable between different architectures. Vectorization, parallelization and data
partitioning are hidden from the user, except for optimization switches.

• P++ application codes exhibit communication as efficiently as codes with explicit message
passing. With improved C++ compilers and an optimized implementation of M++, single
node performance of C++ with array classes has the potential to approximate that of Fortran.

347

Current State, Perfor71_a71ee" Issues and Related Wor_:: The P++ prototype is currently
implemented on the bases of the AT&T C++ C-Front precompiler using the Intel NX-2
communication library (or, on an experimental basis, an EXPRESS-like portable communication
library from Caltech). Current versions are running on the Intel iPSC/860 Hypercube, the Intel
Simulator, SUN workstations, the Cray 2, and IBM PCs. The prototype contains all major concepts
described above. At several points, without loss of generality, its functionality is restricted to the
needs within our own set of test problems (3D multigrid codes and FAC/AFAC codes).

The feasibility of the approach has been proven by the successful implementation and use of our
set of test problems on the basis of P++, in particular, the very complex AMR++ class library. The
results that have been obtained with respect to parallel efficiency, whose optimization was one of the
major goals of the P++ development, are also very satisfying: Comparisons for P++ and Fortran
with message passing based test codes, respectively, have shown that the number of messages and
the amount of communicated data is roughly the same. Thus, besides a negligible overhead, similar
parallel efficiency can be achieved. With respect to single node performance, only little optimization
has been done. The major reason is that the used system software components (AT&T C++
C-Front precompiler 2.1, M++) are not very well optimized for the target machines. HoweveL our
experiences with C++ array language class libraries on workstations and on the Cray Y-MP (in
collaboration with Sandia National Laboratories: about 9070 of the Fortran vector performance is

achieved) are very promising: With new optimized system software versions, Fortran performance
can be approximated. Therefore, altogether, we expect the parallel performance for P++ based
codes to be similar to that obtained for optimized Fortran codes with explicit message passing.

AMR++, AN ADAPTIVE MESH REFINEMENT CLASS LIBRARY

AMR++ is a C++ class library that simplifies the details of building self-adaptive mesh
refinement applications. The use of this class library significantly simplifies the construction of local
refinement codes for both serial and parallel architectures. AMR++ has been developed in a serial
environment using C++ and the M++ array class interface. It runs in a parallel environment,
because M++ and P++ share the same array interface. The nested set of abstractions provided by
AMR++ uses P++ at its lowest level to provide architecture independent support. Therefore,
AMR++ inherits the machine targets of P++, and, thus, has a broad base of machines on which to
run. The efficiency and performance of AMR++ is mostly dependent on the efficiency of M++ and
P++, in the serial and parallel environments respectively. In this way, the P++ and AMR++ class
libraries separate the abstractions of local refinement and parallelism to significantly ease the
development of parallel adaptive mesh refinement applications in an architecture independent
manner. The AMR++ class library represents work which combines complex numerical, computer
science, and engineering application requirements. Therefore, the work naturally involves

compromises in its initial development. In the following sections, the features and current
restrictions of the AMR++ class library are summarized.

Block, Strntcture.d Grids Features and Restrietio_s: The target grid types of AMR++ are 2D
and 3D block structured with rectangular or logically rectangular blocks. On the one hand, they
allow for a very good representation of complex internal geometries introduced through local
refinement in regions with increased local activity. This flexibility of local refinement block

structured grids equally applies to global block structured grids that allow for matching complex
external geometries. On the other hand, the restriction to structures of rectangular blocks, as
opposed to fully unstructured grids, allows for the application of the VSG programming model of
P++ and, therefore, is the foundation for good efficiency and performance in distributed
environments, which is one of the major goals of the P++/AMR++ development. Thus, we believe
that block structured grids are the best compromise between full generality of the grid structure
and efficiency in a distributed parallel environment. The application class forms a broad cross
section of important scientific applications.

348

In the following, the global grid is the finest uniformly discretizedgrid that coversthe whole
physical domain. Local refinementgrids are formed from the global grid, or recursivelyfrom
refinementgrids,by standardrefinementwith h/ine 1= 5hcoa,-s_ in each coordinate direction. Thus,

boundary lines of block structured refinement grids always match grid lines on the underlying
discretization level. The construction of block structured grids in AMR++ has some practical

limitations that simplify the design and use of the class libraries. Specifically, grid blocks at the
same level of discretization cannot overlap. Block structures are formed by distinct or connected

rectangular blocks that share their boundary points (block interfaces) at those places where they
adjoin each other. Thus, a connected region of blocks forms a block structured refinement grid. It is
possible that one refinement level consists of more than one disjunct block structured refinement
grid. In the dynamic adaptive refinement procedure, refinement grids can be automatically merged,
if they adjoin each other.

2.1.2

I

I

i' :

\
= i

\
\

\
\

2.1.1 3.1._.1 1

2.1.2 ! J !

.......................... ;__..: J

2.1.1

.]

l

grfd block

extended boundary

block interface

(a) 3-1evel composite grid (b) adjoining

grid blocks

(c) composite grid tree

Figure 1: Example of a composite grid, its composite grid tree, and a cut out of 2 blocks with their
extended boundaries and interface.

In Figure 1 (a), an example for a composite grid is illustrated: The composite grid shows a
rectangular domain within which we center a curved front and a corner singularity. The grid blocks
are ordered lexicographically: the first digit represents the level, the second digit the connected
block structured refinement grid, and the third digit the grid block. Such problems could represent
the structure of shock fronts or multi-fluid interfaces in fluid flow applications: In oil reservoir
simulations, for example, the front could be an oil water front moving with time and the corner
singularity could be a production well. In this specific example, the front is refined with two block
structured refinement grids: the first grid on refinement level 2 is represented by grid blocks 2.1.1
and 2.1.2, and the second grid on level 2 by grid blocks 3.1.1, 3.1.2 and 3.1.3. In the corner on each
of the levels, a single refinement block is introduced.

For ease of implementation, in the AMR++ prototype the global grid must be uniform. This
simplification of the global geometry was necessary in order to be able to concentrate on the major
issues of this work, namely, the implementation of local refinement and self adaptivity in an
object-oriented environment. This restriction is not critical and can be eased in future versions of
the prototype. Aside from implementation issues, some additional functionality must be made
available:

349

For implicit solvers,the resulting domaindecompositionof the global grid may requirespecial
capabilitieswithin the singlegrid solvers(e.g.,multigrid solversfor block structured grids with
adequatesmoothers,suchasinter-block line or plane relaxation methods).

The block structures in the current AMR++ prototype aredefinedonly by the needsof local
refinementof a uniform global grid. This restriction allowsthem to be Cartesian. More
complicatedstructures asthey result from difficult non Cartesianexternal geometries(e.g.,
holes;see[11]) currently are not taken into consideration.An extensionof AMR++, however,
is principally possible.The wide experiencefor general2D block structured grids that hasbeen
gainedat GMD [11]can form a basisfor theseextensions.Whereasour work is comparably
simple in 2D, becauseno explicit communicationis required,extendingthe GMD work to 3D
problemsis very complex.

Some Implementation L_sues: In the following, some implementation issues are detailed. They
also demonstrate the complexity of a proper and efficient treatment of block structured grids and
adaptive refinement. AMR++ takes care of all of these issues, which would otherwise have to be
handled explicitly at the application level.

• Dimensional independence and multi-indexing: The implementation of most features of
AMR++ and its user interface is dimensionally independent. Being derived from user
requirements, on the lowest level, the AMR++ prototype is restricted to 2D and 3D
applications. This, however, is a restriction that can easily be removed.

One important means by which dimensional independence is reached, is multi-dimensional
indices (multi-indices), which contain one index for each coordinate direction. On top of these
multi-indices are index variants defined for each type of sub-block (interior, interior and

boundary, boundary only, ...), which contain multiple multi-indices. For example, for
addressing the boundary of a 3D block (non-convex), one multi-index is needed for each of the
six planes. In order to avoid special treatment of physical boundaries, all index variants are
defined twice, including and excluding the physical boundary, respectively. All index variants,
several of them also including extended boundaries (see below), are precomputed at the time
when a grid block is allocated. In the AMR++ user interface and in the top level classes, only
index variants or indicators are used and, therefore, allow a dimensionally independent

formulation, except for very low level implementations.

• Implementation of block structured grids: The AMR++ grid block objects consist of the
interior, the boundary, an extended boundary of a grid block, and links that are formed
between adjacent pairs of grid block objects. The links contain P++ array objects that do not
consist of actual data, but serve as views (subarrays) of the overlapping parts of the extended
boundary between adjacent grid block objects. The actual boundaries that are shared between
different blocks (block interfaces) are very complex structures that are represented properly in
the grid block objects. For example, in 3D, interfaces between blocks are 2D planes, those
between plane-interfaces are 1D-line interfaces, and, further, those between line-interfaces are
points (zero-dimensional).

In Figure 1 (b), grid blocks 2.1.1 and 2.1.2 of the composite grid in Figure 1 (a) are depicted
including their block interface and their extended boundary. The regular lines denote the
outermost line of grid points of each block. Thus, with an extended boundary of two, there is
one line of points between the block boundary line and the dashed line for the extended
boundary. In its extended boundary, each grid block has views of the values of the original grid
points of its adjoining neighboring block. This way it is possible to evaluate stencils on the
interface and, with an extended boundary width of two, to also define a coarse level of the
block structured refinement grid in multigrid sense.

• Data structures and iterators: In AMR++, the composite grid is stored as a tree of all

refinement grids, with the global grid being the root. Block structured grids are stored as lists
of blocks (for ease of implementation; collections of blocks would be sufficient in most cases).

35O

In Figure 1 (c), the composite grid tree for the example composite grid in Figure 1 (a) is
illustrated.

The user interface for doing operations on these data structures are so-called iterators. For
example, for an operation on the composite grid (e.g., zeroing each level or interpolating a grid
function to a finer level), an iterator is called that traverses the tree in the correct order
(preorder, postorder, no order). This iterator as arguments takes the function to be executed
and two indicators that specify the physical boundary treatment and the type of sub grid to be
treated. The iteration starts at the root and recursively traverses the tree. For doing an
operation (e.g. Jacobi relaxation) on a block structured grid, iterators are available, that
process the list of blocks and all block interface lists. They take arguments similar to those for
the composite grid tree iterators.

Object-Oriented Desig_. and U.ser Interface: The AMR++ class libraries are customizable by
using the object oriented features of C++. For example, in order to obtain efficiency in the parallel
environment, it may be necessary to introduce alternate iterators that traverse the composite grid
tree or the blocks of a refinement region in a special order. This is implemented by alternate use of
different base classes in the serial and parallel environment. The same is true for alternate

composite grid cycling strategies as, for example, needed in AFAC, in contrast to FAC algorithms
(Section 4). Application specific parts of AMR++, such as the single grid solvers or criteria for

adaptivity, which have to be supplied by the user, are also simply specified through substitution of
alternate base classes: A pre-existing application (e.g., problem setup and uniform grid solver) uses
AMR++ to extend its functionality and to build an adaptive mesh refinement application. Thus,
the user supplies a solver class and some additional required functionality (refinement criteria, ...)
and uses the functionality of the highest level AMR++ ((Self_)Adaptive_)Composite_Grid class to
formulate his special algorithm or to useone of the supplied PDE solvers. In the current prototype
of AMR++, FAC and AFAC based solvers (Section 4) are supplied. If the single grid application is
written using P++, then the resulting adaptive mesh refinement application is architecture
independent, and so can be run efficiently in a parallel environment.

The design and interface of AMR++ is object-oriented and the implementation of our
prototype extensively uses features like encapsulation and inheritance: The abstraction of
self-adaptive local refinement, which involves the handling of many issues (including memory
management, interface for application specific control, dynamic adaptivity, and efficiency), is
reached through grouping these different functionalities in several interconnected classes. For
example, memory management is greatly simplified by the object oriented organization of the
AMR++ library: Issues such as lifetime of variables are handled automatically by the scoping rules
for C++, so memory management is automatic and predictable. Also, the control over construction
of the composite grid is intuitive and natural: The creation of composite grid objects is similar to
the declaration of floating point or integer variables in procedural languages like Fortran and C. The
user basically formulates a solver by allocating one of the predefined composite grid solver objects,
or by formulating it on the basis of the composite grid objects and associated iterators and by
supplying the single grid solver class.

Although not part of the current implementation of AMR++, C++ introduces a template
mechanism in the latest standardization of the language, which is only just beginning to be part of

commercial products. The general purpose of this template language feature is to permit class
libraries to access user specified base types. For AMR++, for example, the template feature could
be used to allow the specification of the base solver and adaptive criteria for the parallel adaptive
local refinement implementation. In this way, the construction of an adaptive local refinement code
from the single grid application on the basis of the AMR++ class library can become even simpler
and cleaner. The object-oriented design of interconnected classes will not be further discussed. The
reader is referred instead to [10] and [7].

Static and Dynamic Adaptivity, Grid Generation: In the current AMR++ prototype, static
adaptivity is fully implemented. The user canspecify a composite grid either interactively or by

351

someinput file: For eachgrid block, AMR++ needsits global coordinatesand the parent grid
block. Block structured local refinementregionsare formedautomatically by investigating
neighboringrelationships. In addition, the functionalities for adding and deleting grid blocks under
usercontrol are availablewithin the Adaptive_Composite_Gridobject of AMR++.

Recently,dynamic adaptivity hasbeena subject of intensiveresearch.Initial resultsarevery
promising, and somebasicfunctionality hasbeenincludedin the AMR++ prototype: Given a
global grid, a flaggingcriteria function, and somestoppingcriteria, the
Self_Adaptive_Composite_Gridobject containsthe functionality for iteratively solvingon the actual
compositegrid and generatinga new discretization levelon top of the respectivefinest level.
Building a new compositegrid level worksas follows:

1. The flagging criteria deliversan unstructured collection of flaggedpoints in eachgrid block.
For representinggrid block boundaries,all neighboringpoints of flaggedpoints arealsoflagged.

2. The new set of grid blocksto contribute to the refinementlevel (gridding) is built by applying
a smart recursivebisectionalgorithm similar to the onedevelopedin [2]: If building a rectangle
around all flaggedpoints of the given grid block is too inefficient, it is bisectedin the longer
coordinate direction and new enclosingrectanglesarecomputed. The efficiencyof the
respectivefraction is measuredby the ratio of flaggedpoints to all points of the new grid block.
In the following tests, 75%is used.This procedureis repeatedrecursivelyif any of the new
rectanglesis also inefficient. Having the goal of building the rectanglesas largeas possible
within the given efficiencyconstraint, the choiceof the bisectionpoint (splitting in halvesis
too inefficient becauseit results in very many small rectangles)is doneby a combinationof
signaturesand edgedetection. A detailed description of this method reachesbeyondthe scope
of this paper, sothe reader is referredto [2]or [7].

3. Finally, the new grid blocks areaddedto the compositegrid to form the new refinementlevel.
Grouping theseblocksinto connectedblock structured grids is donethe sameway as it is done
in the static case.

This flagging and gridding algorithm has the potential for further optimization: The bisection
method canbe further improved, and a clusteringand mergingalgorithm could be applied. This is
especiallytrue for refinementblocksof different parent blocksthat could form onesingleblock with
more than oneparent. Internal to AMR++, this kind of parent / child relationship is supported.
The results in Section 5, howeverl show that the gridding already is quite good. The number of
blocks that are constructed automatically is only slightly larger (< 10%) than a manual
construction would deliver. A next step in self-adaptive refinement would be to support time

dependent problems whose composite grid structure changes dynamically with time (e.g., moving
fronts). In this case, in addition to adding and deleting blocks, enlarging and diminishing blocks
must be supported. Though some basic functionality and the implementation of the general concept
is already available, this problem has not yet been further pursued.

Current State and Related Wor_:: The AMR++ prototype is implemented using M++ and the

AT&T Standard components class library to provide standardized classes (e.g., linked list classes).

Through the shared interface of M++ and P++, AMR++ inherits all target architectures of P++.
The prototype has been successfully tested on SUN workstations and on the Intel iPSC/860, where

it has proved its full functionality with respect to parallelization. Taking into account the large
application class of AMR++, there are still several insufficiencies and restrictions, as well as a large
potential for optimization. For parallel environments, e. g., efficiently implementing self-adaptivity,
including load (re)balancing, requires further research. In addition, the iterators that are currently
available in AMR++, though working in a parallel environment, are best suited for serial

environments. Special parallel iterators that, for example, support functional parallelism on the
internal AMR++ level would have to be provided. Until now, AMR++ has been successfully used
as a research tool for the algorithms and model problems described in the next two sections.

352

However,AMR++ providesthe functionality to implementmuchmore complicatedapplication
problems.

Concerningparallelization, running AMR++ under P+-b on the Intel iPSC/860 hasprovenits
full functionality. Intensiveoptimization, however,hasonly beendonewithin P++. AMR++ itself
offersa large potential for optimization.

To the authors' knowledge, the AMR++ approach is unique. There are several other

developments in this area (e.g. [11]), but they either address a more restricted class of problems or
are restricted to serial environments.

MULTILEVEL ALGORITHMS WITH ADAPTIVE MESH REFINEMENT

The fast adaptive composite grid method (FAC, [12]), which was originally developed from and

is very similar to the Multi-Level Adaptive Technique (MLATI [3]), is an algorithm that uses
uniform grids, both global and local, to solve partial differential equations. This method is known
to be highly efficient on scalar or single processor vector computers, due to its effective use of
uniform grids and multiple levels of resolution of the solution. On distributed memory
multiprocessors, methods like MLAT or FAC benefit from their tendency to create multiple isolated
refinement regions, which may be effectively treated in parallel. However, for several problem
classes, they suffer from the way in which the levels of refinement are treated sequentially in each

region. Specifically, the finer levels must wait to be processed until the coarse-level approximations
have been computed and passed to them; conversely, the coarser levels must wait until the finer

level approximations have been computed and used to correct their equations. Thus, the
parallelization potential of these "hierarchical" methods is restricted to intra-level parallelization.

The asynchronous fast adaptive composite method (AFAC) eliminates this bottleneck of

parallelism. Through a simple mechanism used to reduce inter-level dependencies, individual
refinement levels can be processed by AFAC in parallel. The result is that the convergence rate fox

AFAC is the square root of that for FAC. Therefore, since both AFAC and FAC have roughly the
same number of floating point operations, AFAC requires twice the serial computational time as
FAC, but AFAC allows for the introduction of inter-level parallelization.

As opposed to the original development of FAC and AFAC, in this paper, the modified
algorithms known as FACx and AFACx are discussed and used. They differ in the treatment of the
refinement levels. Whereas in FAC and AFAC, a rather accurate solution is computed (e._., one

MG V-cycle), FACx uses only a couple of relaxations. AFACx uses a two-grid procedure [of
FMG-type) on the refinement level and its standard coarsening with several relaxations on each of
these levels. Experiments and some theoretical observations show that all of the results that have
been obtained for FAC and AFAC also hold for FACx and AFACx (see [14]). In the following, FAC

and AFAC always denote the modified versions (FACx and AFACx).

Numerical algorithms: Both FAC (MLAT) and AFAC consist of two basic steps, which are

described loosely as follows:

1. Smoothing phase: GiVen the solution approximation and composite grid residuals on each level,
use relaxation or some restricted multigrid procedure to compute a correction local to that level

(a better approximation is required on the global grid, the finest uniform discretization level).

2. Level transition phase: Combine the local corrections with the global solution approximation,
compute the global composite grid residual, and transfer the local components of the

approximation and residual to each level.

The difference between MLAT and FAC on the one hand and AFAC on the other hand is in the

order in which the levels are processed and in the details of how they are combined:

353

FAC and MLAT can roughly beviewedasstandard multigrid methodswith meshrefinement
and a special treatment of the interfacesbetweenthe refinement levelsand the underlying
coarselevel. In FAC and MLAT the treatment of the refinementlevelsis hierarchical. Theory
on FAC is basedon its interpretation asa multiplicative SchwarzAlternating Method or as a
block relaxation method of Gauss-Seideltype.

FAC and MLAT mainly differ by their motivation. Whereasit is the goal of FAC to computea
solution for the compositegrid (grid points of the compositegrid areall the interior points of
the respectivefinest discretization level), the major goalof MLAT is to get the best possible
solution on a given uniform grid (with using local refinement). Thus, in FAC, coarselevelsof
the compositegrid servefor the computationof corrections.Therefore,FAC wasoriginally
formulated as a correction scheme(CS). The MLAT formulation requiresa full approximation
scheme(FAS), becausecoarselevelsserveas correction levelsfor the points coveredby finer
levels. MLAT wasfirst developedusing finite differencediscretization,whereasfor FAC finite
volume discretizationswereused.However,they are closelyrelated and in manyproblems lead
to the samestencil representation.This is true exceptperhapsfor the interfacepoints, where
finite volume discretizationsgenerally leadto conservativediscretizations(FAC), whereasfinite
differencediscretizationsdo not (MLAT). Instead, in MLAT, usually a higherorder
interpolation is usedon the interface. Other than this exception,becauseof the modification of
the original FAC algorithm asdiscussedabove,there is no differencein the treatment of the
refinement levelsbetweenthe original MLAT algorithm and the modified FAC algorithm that
is discussedin this paper. It can beshown([7]) that an FASversionof FAC with a special
choiceof the operatorson the interfaceis equivalentto the originally developedMultilevel
Adaptive Technique(MLAT).

AFAC on the other hand consistsof the samediscretization and operatorsasFAC, but a
decoupledand asynchronoustreatment of the refinementlevelsin the solution phase,which
dominatesthe arithmetic work in the algorithm. Theory on AFAC can bebasedon its
interpretation as an additive SchwarzAlternating Method or as a block relaxation method of
Jacobi type.

Theory in [12]showsthat, under appropriateconditions, the convergencefactors of FAC and
AFAC havethe relation PAFAC = P_. This implies that two cycles of AFAC are roughly

equivalent to one cycle of FAC. If the algorithmic components are chosen slightly different than for
the convergence analysis or if applied to singular perturbation problems as discussed in the next
section, experiences show that AFAC is usually better than as suggested by the above formula: In
several cases, the convergence factor of AFAC shows only a slight degradation of the FAC rate
(Section 5).

Parallclization - a_l Example for the Use of P++/AMR ++: By example, we demonstrate
some of the features of AMR++ and examples for the support of P++ for the design of parallel
block structured local refinement applications on the basis of FAC and AFAC algorithms.

In a parallel environment, partitioning the composite grid levels becomes a central issue in the
performance of composite grid solvers. In Figure 2, two different partitioning strategies that are
supported within P++/AMR++ are illustrated for the composite grid in Figure 2. For ease of
illustration, grid blocks 2.2 and 2.3 are not included. The so-called FAC partitioning in Figure 2 (b)
is typical for implicit and explicit algorithms, where the local refinement levels have to be treated in
a hierarchical manner (FAC, MLAT,...). The so-called AFAC partitioning in Figure 2 (a) can be
optimal for implicit algorithms that allow an independent and asynchronous treatment of the
refinement levels. In the case of AFAC, however, it must be taken into consideration that this
partitioning is only optimal for the solution phase, which dominates the arithmetic work of the
algorithm. The efficiency of the level transition phase, which is based on the same hierarchical
structure as FAC and which can eventually dominate the aggregate communication work of the

algorithm, highly depends on the architecture and the application (communication / computation
ratio, single node (vector) performance, message latency, transfer rate, congestion, ...). For

354

< >

overlap update

VSG update

block interface update

i

4

2.12

4

_1.1

L

(a) AFAC-partitioning

I

l
i

, !

i
J
[
t

i i

(b) FAC-partitioning

Figure 2: Parallel multilevel local refinement algorithms on block structured grids -- an example for

the use of AMR-k+ and the hidden interaction of the P-k+ communication models.

determining whether AFAC is better than FAC in a parallel environment, the aggregate efficiency

and performance of both phases and the relation of the convergence rates must be properly
evaluated. For more detail, see [10] and [7]. Both types of partitioning are supported in the

P-k-k/AMR,k-k environment.

Solvers used on the individually partitioned composite grid levels make use of overlap updates
within P-{-,k array expressions, which automatically provide communication as needed. The

inter-grid transfers between local refinement levels, typically located on different processors, rely on
VSG updates. The VSG updates are also provided automatically by the P-k,k environment. Thus,
the underlying support of parallelism is isolated in P-k.k through either overlap update or VSG

update, or a combination of both, and the details of parallelism are isolated away from the AMR.k+
application. The block structured interface update is handled in AMR,k.k. However,
communication is hidden in P--k.k (mostly the VSG update).

RESULTS FOR SINGULAR PERTURBATION PROBLEMS

Use of the tools described above is now demonstrated with initial examples. The adaptivity

provided by AMR,k.k is necessary in case of large gradients or singularities in the solution of the
PDE. They may be due to rapid changes in the right-hand side or coefficients of the PDE, corners
in the domain, or singular perturbations. Here, the first and the last case will be examined on the

basis of model problems.

Singularly perturbed PDEs represent the modelling of physical processes with relatively small
diffusion (viscosity) and dominating convection. They may occur as a single equation or within

355

systemsof complexequations,e.g., asthe momentumequationswithin the Navier-Stokesor, in
addition, assupplementarytransport equationsin the Boussinesqsystemof equations.Here,we
merely treat a singleequation. However,weonly usemethodsthat generalize directly to more

complex situations. Therefore, we do not rely on the direct solution methods provided by
downstream or ILU relaxations for simple problems with pure upstream discretization. The latter
are not direct solution methods for systems of equations. Further, these types of flow direction
dependent relaxations are not efficiently parallelizable in the case of only a few relaxations as is
usually used in multilevel methods. This in particular holds on massively parallel systems.

!_!!!!

(a) Error for51evels _ i _ _ ,.I I I [+_

--ll

°.°5 ,HI
2 M LIIIll[tllll

° }1 i

T! i:' !i -

ii !i !

0.5 _ ,

0.5 U -¢i "'Jt,iil

0

I lLti\ .= o.ool
o,ol [-- 3"M_L b = 22

0.005 _

-+- 444_ J-

0,5 _ / • _ ,_

+...+-t_ --+--

0

Figure 3: Results for a singular perturbation problem: Plots of the error and composite grid, with

two different choices of the accuracy 77in the self-adaptive refinement process.

Model Problem, an fSoS'ersi Numerical-results have_een obtained for the model problem

-EAuJraux+buy=f on _= (0,1) 2

with Dirichlet boundary conditions on 0fl and E = 0.00001. This problem serves as a good model
for complex fluid flow applications, because several of the properties that are related to self-adaptive
mesh refinement are already present in this simple problem. The equation is discretized using

356

isotropic artificial viscosity (diffusion):

Lh .-- --_hAh nt- aD2h,=U + bD2h,_U with Ah = D _• -- h,z

eh := max{e,_hmax{la[,Jbl}/2}

+ D 2
h,y

The discrete system is solved by multilevel methods - MG on the finest global grid and FAC or
AFAC on composite grids with refinement. For the multigrid method, it is known that, with
artificial viscosity, the two-grid convergence factor (spectral radius of the corresponding iteration

matrix) is bounded below by 0.5 (for h --+ 0). Therefore, multilevel convergence factors converge to
1.0 with an increasing number of levels. In [5], a multigrid variant which shows surprisingly good
convergence behavior has been developed: M(] convergence factors stay far below 0.5 (with three
relaxations on each level)• Here, essentially this method is used, which is described as follows:

• Discretization with additional isotropic artificial viscosity using/9 = 3 on the finest grid m and

_1-1 = 1/2 (j3l + l/ill) for coarser grids t = m - 1, m - 2,...,

• MG components: odd/even relaxation, non-symmetric transfer operators corresponding to
linear finite elements. These components fulfil the Galerkin condition for the Laplacian.

Anisotropic artificial viscosity may also be used, but generally requires (parallel) zebra line
relaxation, which has not yet been fully implemented.

For FAC and AFAC, the above MG method with V(2,1) cycling is used as a global grid solver.
On the refinement levels, three relaxations are performed, and fl = 3 is chosen on refinement grids.

Convergence Result._: In Table 1, several convergence factors for FAC, AFAC, and, for
comparison, for MG are shown. The finest grids have mesh sizes of h = 1/64 or h = 1/512,
respectively. For FAC and AFAC, the global grid has the mesh size h = 1/32, the (predetermined)
fine block always covers 1/2 of the parent coarse block along the boundary layer. The following
conclusions can be drawn:

• For MG, the results are as expected. In the case of FAC and AFAC, the choice of _ has to be

further investigated.

• V cycles are used; W or F cycles would yield better convergence rates but worse parallel

efficiency.

• If p(FAC) is small, the expected result p(AFAC) ._ _/p(FAC) can be observed, otherwise

p(FAC) _ p(AFAC) << _/p(FAC).

Poisson SPP: ;3 = 3 SPP: _ = 1

h 1/6411/512 1/64 1/512 1/64 1/512
MG-V 0.14 0.14 0.17 0.30 0.18 0.50

FAC 0.17 0.18 0.30 0.65 0.30 0.80

AFAC 0•40 0.41 0.41 0.67 0•45 0.95

Table 1: Convergence factors for a singular perturbation problem (SPP: a = b = 1, E = 0.00001) and,

for comparison, for Poisson's equation.

Self-Adaptive Me.4J Rq[i',,'_,wT_t Re._,uIt._: More interesting for the goal of this paper are
applications of the self-adaptive process. As opposed to the convergence rates, they do not depend

357

only on the PDE, but also on the particular solution. The results in this paper have been obtained
for the exact solution

u(x) = e(X-1)/_- e-1/_ 1 e_100(x_+(__l)2 }
1 - e-l/_ + 2 '

which has a boundary layer for x = 1, 0 < y < 1 and a steep hill around x = 0, y = 1. In order to
measure the error of the approximate solution, a discrete approximation to the L1 error norm is
used. This is appropriate for this kind of problem: For solutions with discontinuities of the above

type, one can observe 1st order convergence only with respect to this norm (no convergence in the
L_ norm, orde_ 0.5 in the L2 norm).

The resultshave been obtained using the flagging criteria

h I [_hmax{la[,]b[} ([Dh2,xu[+ [D_,_u[)] _> r/

with a given va_e of rl. For E < eh, the second factor is an approximation to the lowest order error

term of the discretization. Based on experiments, f -- 1 is a good choice. Starting with the global
grid, ihe Compo-site grid is self-adaptively built on the basis of the flagging and gridding algorithm
described in Section 3.

h

1/32

1/64
1/128
1/256

1/512

MG-V

uniform

0.0293 961

0.0159 3969

0.0083 16129

0.0043 65025

0.0023 261121

= 0.02
e n b

0.0293 961 1

0.0160 1806 4

0.0089 3430 10

0.0056 6378 19

0.0073 12306 34

FAC

= 0.01

e [n

0.0293 961

0.0160 1967

0.0087 3971

0.0051 7943

0.0044 15909

b

1

4

10

16

30

= 0.001
e

0.0293

0.0159

0.0083

0.0043

O.0023

[n b

961 1

2757 3

6212 7

13473 12

27410 22

Table 2: Accuracy (Ll-norm e) vs. the number of grid points (n) and the number of blocks (b) for
MG-V on a uniform grid and FAC on self-adaptively refined composite grids.

= :7:

In Table 2, the results for MG and FAC are presented for three values of 7/. In Figure 3, two of
the corresponding b_lock structured grids are displayed. The corresponding error plots give an

impression of the error distribution restricted from the composite grid to the global uniform grid.
Thus, larger er_rs near the boundary layer are not visible. The results allow the following
conclusions: _ -

• In spite of the well known difficulties in error control of convection dominated problems, the
grids that _econstructed self-adaptively are reasonably well suited to the numerical problem.

• As long as the accuracy of the finest level is not reached, the error norm is approximatively
proportional to r/. As usual in error control by residuals, with the norm of the inverse operator
being unknown, the constant factor is not known.

• If the refine!nent grid does not properly match the local activity, convergence rates significantly
degrade and the error norm may even increase.

• Additional tests have shown that, if the boundary layer is fully resolved with an increased

number of refinement levels, the discretization order, as expected, changes from one to two.

• _e gridding algorithm is able to treat very complicated refinement structures efficiently: The
number of blocks that are created is nearly minimal (compared to hand coding).

358

• Though this example needs relatively large refinement regions, the overall gain by using
adaptive grids is more than 3.5 (taking into account the different number of points and the
different convergence rates). For pure boundary layer problems, factors larger than 10 have
been observed.

• These results have been obtained in a serial environment. AMR++, however, has been

successfully tested in parallel. For performance and efficiency considerations, see Sect. 2 and 3.

References REFERENCES

[1] Balsara, D.; Lemke, M.; Quinlan, D.: AMR++, a parallel adaptive mesh refinement object
class library for fluid flow problems; Proceedings of the Symposium on Adaptive, MuItile'vel
and Hierarchical St'rategics, ASME Winter Annual Meeting, Anaheim, CA, 1992.

[2] Bell, J; Berger, M.; Saltzman, J.; Welcome, M.: Three dimensional adaptive mesh refinement
for hyperbolic conservation laws; Internal Report., Los Alamos National Laboratory.

[3] Brandt, A.: Multi-level adaptive solutions to boundary value problems; Math. Cornp., 31,
1977, pp. 333-390.

[4] Chandy, K.M.; Kesselman, C.: CC++: A Declarative Concurrent Object Oriented
Programming Notation; California Institute of Technology, Report, Pasadena, 1992.

[5] DSrfer, J.: Mehrgitterverfahren bei singuliiren StSrungen; Dissertation, Heinrich-Heine
Universitiit Diisseldorf, 1990.

[6] Hempel, R.; Lemke, M.: Parallel black box multigrid; Proceedings of the Fourth Copper
Mountain Conference on Multigrid Methods, 1989, SIAM, Philadelphia.

[7] Lemke, M.: Multilevel Verfahren mit selbst-adaptiven Gitterverfeinerungen fiir
Parallelrechner mit verteiltem Speicher; Dissertation, Universit_it Dfisseldorf, to appear in
1993.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Lemke, M.; Quinlan, D.: Fast adaptive composite grid methods on distributed parallel
architectures; Corn, nlu,7_ications in Applied Numerical Methods, Vol. 8, No. 9, Wiley, 1992.

Lemke, M.; Quinlan, D.: P++, a C++ Virtual Shared Grids Based Programming
Environment for Architecture-Independent Development of Structured Grid Applications;
Lecture Notes in Co_1_pute.r Science, No. 634, Springer Verlag, September 1992.

Lemke, M.; Quinlan, D.: An Object-Oriented Approach for Parallel Self-Adaptive Mesh
Refinement on Block Structured Grids; Proceedings of the 9th GAMM-Seminar on Adaptive

Methods, Kiel, Germany, 1993; Notes of Numerical Fluid Mechanics, Vieweg, to appear.

Lonsdale, G; Schiiller, A.: Multigrid efficiency for complex flow simulations on distributed
memory machines; P_rallel Computing, 19, 1993, pp23 - 32.

McCormick, S.: Multilevel Adaptive Methods for Partial Differential Equations; Frontiers in
Applied Mathematic._, SIAM, Vol. 6, Philadelphia, 1989.

McCormick, S.; Quinlan, D.: Asynchronous multilevel adaptive methods for solving partial

differential equations on multiprocessors: Performance results; Parallel C_,np_#i'_tg, 12, 1989.

McCormick, S.; Quinlan, D.: Idealized analysis of asynchronous multilevel methods;
Proceedings of the S!l'lT_po._ium on Adaptive:, Multilevel and Hierarchie:al Strategic.% ASME
Winter Annual Meeting, Anaheim, CA, Nov. 8 - 13, 1992.

359

REPORT DOCUMENTATION PAGE For,.Approv_d
OMBNo OZO4-OISS

i Public reporting burden for this collection of information is estimated to average I hour per response including the time for revew ng instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection oflnformatiorL Send comments regarding th s burden estimate or any other aspect of this
collection of information, ;ncluding suggestions for reducing this burden, toWashington Headquarters Services. Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway. Suite 1204. Arlington, VA 22202-4302, and to the Of_ce of Management and Budget. Paperwork Reduction Project (0704-0]1_}_ Washington. DC 20r_O3.

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

November 1993 Conference Publication

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Sixth Copper Mountain Conference on Multigrid Methods
WU 505-59-53-01

6. AUTHOR(S)

N. Duane Melson, T. A. Manteuffel, and S. F. McCormick, editors

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

NASA Langley Research Center REPORTNUMBER

Hampton, VA 23681-0001 L-17275

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) I0. SPONSORING/MONITORING

National Aeronautics and Space Administration, Washington, DC AGENCYREPORTNUMBER
20546-0001; Air Force Office of Scientific Research, Boiling AFB, NASA CP-3224
Washington, DC 20338; the Department of Energy, Washington, Part 1
DC 20585; and the National Science Foundation, Washington, DC
20550.

11. SUPPLEMENTARY NOTES

Organizing Institutions: University of Colorado at Denver, Front Range Scientific Computations, Inc., and
the Society for Industrial and Applied Mathematics.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified-Unlimited

Subject Category 64

13. ABSTRACT (Maximum 200 words)

The Sixth Copper Mountain Conference on Multigrid Methods was held on April 4-9, 1993, at Copper Moun-
tain, Colorado. This book is a collection of many of the papers presented at the confcrcncc and so represents
the conference proceedings. NASA Langley graciously provided printing of this document so that all of thc
papers could bc presented in a single forum. Each paper was reviewed by a member of the conference organizing
committee under the coordination of the editors.

The multigrid discipline continues to expand and mature, as is evident from these proceedings. The vibrancy
in this field is amply expressed in these important papers, and the collection clearly shows its rapid trend to
further diversity and depth.

14. SUBJECTTERMS
Multigrid; Algorithms; CFD

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

4SN 7540-01-280-5500

18. SECURITY CLASSIFICATIO_

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

368
16. PRICE CODE

20. LIMITATION

OF ABSTRACT

i

Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. Z39-18
2¢_8-102

